大模型、自动驾驶相关岗位招聘需求增加,自然语言处理岗位量翻倍;大模型相关岗位招聘薪资上涨,自然语言处理岗位薪资同比增11%;大模型相关岗位对学历、经验的要求提高,4成要求硕博学历;编程语言、机器学习框架、神经网络是大模型人才必备技能;在电动化、智能化、绿色化层面,中国车企的优势明显。
大模型技术的应用,对企业招聘的影响
编辑/翻译工作最易受大模型影响,研发岗位的招聘更快做出调整;
“大语言模型影响指数”高的职业,招聘占比下降,供给端调整略显滞后;
“大语言模型影响指数”高的职业,招聘要求提高;
大模型技术影响的职业,与远程办公类职业重合度较高。
AI技术发展和影响的地域差异
一线城市、省会城市的人工智能发展水平更高;
中西部省会城市的劳动力市场结构更易受大模型影响。
AI技术的发展,带来的AI人才需求变化
大模型、自动驾驶相关岗位招聘需求增加,自然语言处理岗位量翻倍
近两年,国内人工智能技术的发展突飞猛进,大语言模型、机器人、自动驾驶等领域的创新成果备受瞩目。文心一言、通义千问、Kimi等大模型工具,日益广泛地应用于智能客服、内容创作和语言翻译等场景。人形机器人在家庭服务、医疗辅助、工业制造等领域的应用逐渐增多,它们通过集成先进的AI算法,能够执行更加复杂和精细的任务。“萝卜快跑”更是引起了大众对自动驾驶技术发展的关注。
这些AI技术的发展,带动相关人才的招聘需求。智联招聘数据显示,2024年上半年,招聘职位数同比增速前五的人工智能职业,包括大语言模型方面的自然语言处理(111%)、深度学习(61%)岗位,机器人方面的机器人算法岗位(76%),自动驾驶方面的智能驾驶系统工程师(49%)、导航算法(47%)。
大模型相关岗位招聘薪资上涨,自然语言处理岗位薪资同比增11%
聚焦本报告关注的大模型技术,观察自然语言处理、深度学习岗位的招聘薪酬水平。2024年上半年,两个岗位的平均招聘月薪分别为24007元、26279元,位列人工智能相关岗位前列,招聘月薪同比增速分别为11%、2%,增幅领先。一方面,大模型技术作为未来人工智能发展的重要方向,吸引大量企业资本涌入,企业为保持竞争,愿意投入更多资金来吸引、培育专业技术人才。另一方面,大模型相关岗位的专业技能要求较高,符合条件的人才相对稀缺,企业通过高薪来争夺人才。
大模型相关岗位对学历、经验的要求提高,4成要求硕博学历
从招聘要求看,大模型相关岗位对求职者的学历和经验要求均较高,且在进一步提高。学历方面,今年上半年,自然语言处理岗位中,要求硕博学历的占比为35.8%,比去年同期提高5.5个百分点;要求本科学历的占比为56.3%,比去年同期上升12.6个百分点。深度学习岗位中,要求硕博学历的占比为45.5%,比去年同期提高1.5个百分点;要求本科学历的占比为50.7%,与去年同期持平。
经验方面,今年上半年,自然语言处理岗位中,要求3-5年经验的占比33.8%,比去年同期提高2个百分点;要求5年以上经验的占比14.1%,比去年提高3个百分点。深度学习岗位中,要求3-5年经验的占比34%,比去年同期提高3个百分点;要求5年以上经验的占比12.7%,与去年同期持平。
大语言模型相关岗位涉及编程、建模、算法优化等多个方面的工作内容,专业技术门槛较高,因此岗位的学历要求较高。同时企业往往需要人才进行算法创新和模型研发,从而推进大模型在各个业务场景落地,这需要人才具有较为丰富的实战经验,因此岗位的工作经验要求较高。
编程语言、机器学习框架、神经网络是大模型人才必备技能
从技能要求看,今年上半年,自然语言处理岗位中,Python、C/C++、Java等编程语言要求位列第一、四、五位,PyTorch、TensorFlow两大机器学习框架/工具位列第二、三位。CNN、DNN、RNN等神经网络也位列前十。可见,基本编程语言、机器学习框架、神经网络是自然语言处理岗位的必备技能。
深度学习岗位中,技能要求TOP10与自然语言处理岗位类似,包括Python、C/C++、Java等编程语言,PyTorch、TensorFlow、Transformer、Caffe等机器学习/深度学习框架,以及ANN、DNN等神经网络。
大模型技术的应用,对企业招聘的影响编辑/翻译工作最易受大模型影响,研发岗位的招聘更快做出调整
我们沿用去年《AI大模型对我国劳动力市场潜在影响研究》报告中测算“大语言模型影响指数”的方式,输出一套职业大类的“大语言模型影响指数”,并观察其在以ChatGPT为代表的大语言模型出现前的2022年和出现后的2023年、2024年的变化。
横向比较来看,2022年,编辑/翻译、客服/运营、销售/商务拓展、金融/保险服务、市场/品牌/公关的“大语言模型影响指数”位列前五,均高于0.73;软件/硬件研发、运维/测试、人事/行政/财务/法务、教育/培训/科研、视觉/交互/设计位列前十,指数均高于0.6;生产制造、物流/采购/供应链、生活服务的指数最低,均在0.4以下。可见,大语言模型技术对白领岗位影响较大,对蓝领岗位影响较小。
从变化来看,2024年,编辑/翻译、人事/行政/财务/法务的“大语言模型影响指数”分别为0.89、0.68,比2022年分别上升0.09、0.04;客服/运营、软件/硬件研发的指数分别为0.75、0.65,比2022年分别下降0.04、0.07。后者指数下降,说明其职业内部易受大模型影响的工作内容在减少,一定程度反映出该职业招聘针对大模型技术的调整更迅速。
分析背后原因,研发、运营常见于互联网行业,而互联网是处在技术发展前沿、不断创新变化的行业,因此对于大模型技术的接受和应用也更快,在相关岗位的招聘上更快做出调整。
“大语言模型影响指数”高的职业,招聘占比下降,供给端调整略显滞后
观察各职业招聘规模变化与“大语言模型影响指数”的关系。发现它们呈负相关关系,即“大语言模型影响指数”越高的职业,其2022-2024年间招聘量占比下降的幅度越大。如指数较高的客服/运营、销售/商务拓展,2024年上半年的岗位数量占比分别较2022年下降2个、5个百分点以上;软件/硬件研发、运维/测试、人事/行政/财务/法务也下降1个百分点以上。这些职业招聘占比的下降,可能是受到产业结构调整、大模型技术等多重因素影响。
来源:培训杂志